Papers
Plastic Pipes Conference Association # 2014 Chicago
Frank W. O’Callaghan
Functioning pipeline systems are a cornerstone of urban human communities, to bring in the clean water on demand for drinking, washing and sanitary needs, and in turn remove the used water from drains, waste, and stormwater sources. If the pipe system is suddenly rendered non-functional, such as by seismic event; critical disruption of the community and public health danger can result. Of the many requirements for design carried by pipeline systems, seismic events impose arguably the most challenging of all demands on a buried pipeline asset. These include the extreme ground forces, with the variable ground movements that are possible, and the paramount need to restore function to damaged pipe systems as quickly as possible. Pipe system design, materials, installation methods, repair methodologies and practical implications of operation are all directly affected by seismic activity. This paper includes first-hand observations and experiences, specific to pipeline systems in New Zealand seismic events, covering a 27 year period, from 1987 to 2014, including the Edgecombe earthquake of 1987, Christchurch City and Canterbury area earthquakes during 2010 to 2012, and the Eketahuna earthquake of 2014. These events provide us with a unique opportunity to practically evaluate the seismic performance of pipe materials and joint systems, that either survived, or were damaged and repaired, or were totally destroyed and abandoned, specific to New Zealand seismic conditions. This paper presents conclusions and recommendations from lessons learned during these events.
Related papers
Author(s) : A. Marangoni
The quality of infrastructures is a key driver for maximizing the performance of the utilities networks and minimizing the environmental impacts associated with their operation. The water and sewer pipes are key network elements to guarantee a satisfactory service to the citizens. Their end-of-life management is an...
Author(s) : A. Taraiya, P. Degenhart, M. Soliman, M. Boerakker, R. Handstanger, R. Kleppinger
Since the introduction of polyolefins for pressure pipes, continuous improvements have been made to meet ever-higher demands on their performance and to expand their application window beyond their original scope, mostly based on new resin formulations. Today, we also continue to push the limit to provide better...
Author(s) : Drew Mueller, Peter Dyke
HDPE Pipe holds a dominant position in several markets in North America: natural gas distribution, oil patch, mining, landfill and geothermal. So why are polyethylene’s municipal water and wastewater market shares so much lower than these other industries? How has the polyethylene industry been successful in growing...
Author(s) : Derek Muckle
A technical program has been undertaken to provide evidence on the suitability of polyethylene pipe and fitting systems for the distribution of hydrogen fuel gas. The underlying principle has been to evaluate material in the form of a pipe and to consider the performance of the pipe and of the welded jointing systems...
Author(s) : Saleem Shakir
Unplasticized formulations based on Poly(Vinyl Chloride) (PVC) and Chlorinated Poly(Vinyl Chloride) (CPVC) resins offer technical solution to pressure piping systems that find extensive use in residential and industrial applications. Building upon the desirable properties of the vinyl monomer, the chlorine content of...
Author(s) : Lei Wang, Guozhi Xu, Qiaoping Qiu, Weihua Lu, Yanwang Han
PP-R (random copolymerized polypropylene) has been widely used in hot and cold water systems. However, the standard PP-R pipes have the disadvantages of a large high-temperature thermal expansion coefficient, an insufficient notched impact strength, and a low temperature and pressure resistance. In this paper, a new...
Author(s) : Ilija Radeljic, Ebbe Smith
HDPE pipe can be relatively easily scratched during the manipulation on the site, which is especially true for the marine pipelines. Installing the scratched marine pipe with the S bend method presents a risk and repair methods are usually performed. Currently, there is no standard defining the repair procedure, in...
Author(s) : Peter Hubbard, Linqing Luo, Andrew Yeskoo, Kenichi Soga, Krista (Moita) Araica, Gus Cicala, Marshall McLeod
Seismically active faults pose a risk to buried water pipelines that can be complicated to quantify. Fault type, slip rate, pipeline geometry, and soil conditions all factor into a complex soil-pipeline interaction. For critical pipelines that cross faults, high-density polyethylene (HDPE) has become an attractive...
Author(s) : Paul J. Freudenthaler, Joerg Fischer, Mathias Eder, Reinhold W. Lang
For controlled water disinfection, typically chlorine is used and preliminary studies demonstrate its aging and crack growth acceleration effects on polyolefin pipe materials [1, 2]. Although the use of recycled plastics is not prohibited in some ISO standards for polyolefin piping systems [3–5], only small amounts...
Author(s) : James F. Mason, Akshay Ponda, Hermann van Laak, Buc Slay
The effects of liquid hydrocarbons on long term strength of pipe grade thermoplastic resins is an important consideration when designing pressure pipe for use in the oil and gas industry. There is an extensive body of work going back several decades descri bing these effects for pipe grade polyethylenes, and all...
Author(s) : Ernst van der Stok
For PE 100-RC, two tests are still under development for pipes: the point load test (PLT) and the accelerated notch pipe test (aNPT). The PLT was developed by a project group consisting of manufacturers and end users. The PLT determines the resistance to point loads as they can occur in practice. An earlier study...
Author(s) : S. Nestelberger, J. Cheng
The Point Load Test (PLT) [ 1, 2] was designed to simulate the SCG (slow crack growth) failure initiated by a rock pressing into the exterior wall of a polymer pipe. Today’s PE materials sustain long PLT testing times, due to its high SCG resistance design. Consequently, an accelerated “PLT+” with the support...
Author(s) : Amster Howard
Flowable fill is used for many applications, but mainly for pipe trench embedment and backfill. There are three ways that using flowable fill can be kind to the environment. Because flowable fill is self-leveling and has a strength greater than the native soil, the trench cross section can be minimized. This means...
Author(s) : Antonio Rodolfo Jr., Vanderley M. John
Unplasticised (U-PVC) and modified (M-PVC) pipes used in irrigation and infrastructure applications, outside diameter 326 mm, were evaluated according to various fracture mechanics methodologies, including fracture toughness (stress intensity factor KC and energy release rate GC, both at fracture), essential work of...
Author(s) : Gerald Pinter, Johannes Wiener, Florian Arbeiter, Abhishek Tiwari, Otmar Kolednik
For pipe applications, catastrophic failure due to crack growth has to be prevented by all means. Techniques to develop new and even tougher pipe materials are explored in this contribution. The aim is to create a multi-layer architecture, that exhibits high toughness as well as damage tolerance towards sharp notches....
Author(s) : Christian Schalich
Plastic pipes for infrastructure and building applications are precisely specified with regards to wall thickness and diameter. Pipe manufacturers use different measuring methods in order to ensure the required dimensional accuracy and maintain a constant high quality. This paper introduces a measuring system based on...
Author(s) : Suleyman Deveci, Nisha Preschilla, Sulistiyanto Nugroho, Birkan Eryigit
Carbon black (CB) has been used as a perfect and the cheapest solution to prevent photo degradation of polyethylene against UV light exposure. The effect of carbon black on the mechanical properties of polyethylene pipes was studied extensively, but only on well dispersed and distributed carbon black...
Author(s) : White G. Jee, Wes Long, Marcello Russo
In 2018, the North American HDPE pressure pipe market experienced unprecedented demand and growth especially in the region of the Permian basin in west Texas. 1 As aninnovative means of increasing HDPE pipe supply in this region, the first modular mobile extrusion plant was moved to Pecos, TX. Using custom designed...
Author(s) : C. Losher and P.V. Mercea
In the framework of the German Environmental Agency (UBA) requirements of plastic articles in contact with drinking water (KTW-BWGL-guideline), the compliance is verified by comparing so-called “expected concentrations at tap”, C tap , of substances contained in the plastics with specific limits in drinking water...
Author(s) : Lukas Travnicek, Pavel Hutar, Jan Poduska, Andreas Frank, Florian Arbeiter, Jaroslav Kucera, Jiri Sadilek, Gerald Pinter, Lubos Nahlik
The application of recycled material in pressure piping systems has been considered lately – it was suggested, that the recycled polyethylene could be used as a part of a multilayer pipe together with virgin material. This type of pressure pipes is not availableon the market yet, so their properties can be only...