Papers
Plastic Pipes Conference Association # 2016 Berlin
Ingemar Bjorklund, Trygve Blomster, Ilija Radeljic
The S-bend installation method is the reason for the successful worldwide development of the market for marine PE pipelines over the last 50 years. Small and medium sized PE pipes can safely be installed using the S-bend installation method; however, difficulties increase as pipe sizes increase. In order to ensure a safe installation of pipes larger than 2000 mm, PE pipe and resin manufacturers must contribute to the development of the method, and supply expertise to contractors and the end user, as they did in the 1960s and 1970s when the S-bend method was originally developed. The technical support given to contractors and end users will be of utmost importance for the further growth of the market for large diameter marine PE pipelines.
PE pipes have been used for marine pipeline installations since the early 1960s. Today, solid wall PE pipes are by far the most frequently used material for marine pipelines. The main reason for the successful development of the market is the use of the S-bend installation method. This method involves floating the air-filled PE pipeline on the surface of the sea, and then submerging it by filling it with water from one end. During installation the pipe is significantly bent, and subjected to stresses and strains. For most pipelines, the stresses experienced during installation will be far higher than those experienced for the remainder of the pipe’s service life. Typically, the axial stress in a solid wall PE pipe may reach 6 -12 MPa during the installation phase. A solid wall PE pipe can accommodate such stresses, but for thin walled pipes (SDR>26) a significant out of roundness will occur when the pipe is bent. The out of roundness will highly influence the kinking risk for the pipe when bent. Today, solid wall PE pipes are manufactured in sizes up to 2500 mm in diameter, but the extrusion technology and PE material properties set limits for the wall thickness. These limits mean that large diameter pipes must be made to relatively high SDR ratings, and thus are more sensitive to kinking than smaller, more thick walled pipes. In order to safeguard the S-bend installation and avoid kinking failures of the pipes at installation the pipe supplier must be able to calculate the bending at installation, and be able to give technical support to designers, contractors and end users.
This paper highlights the experience of the S-bend installation method, how pipe bending can be calculated, and the necessity of accurate E-modulus data for PE100 materials at high stress levels. The latter is important for assessing safety margins at Sbend installations, and enables the pipe manufacturers to provide better design support to further develop the market for large diameter marine PE pipelines
Related papers
Author(s) : Ajay Taraiya, Peter Degenhart, Mark Boerakker
In PPXX, a technology was presented for the first time that could bi-axially orient polyolefin pipes. With this technology, it is possible to prepare pipes that have a performance far beyond the standard ones. One approach to achieving this performance is via a continuous in-line process. To optimize the in-line...
Author(s) : Olivera Bilic, Vivek Rohatgi, Brody Peterson, David Hukill
Demand for conduit pipe is expected to surge globally due to rapid industrialization and urbanization in residential and commercial sectors. Just in the U.S., according to Market Research analysis, expected growth of the plastic conduit pipe market is at a CAGR of more than 5% over the next ten years. In response to...
Author(s) : Xin Zhou, Abdullah Saber, Shuqiang Wang, Huilong Chen
PE-RT II (PE100 classification) is designed >50 years lifespan at elevated temperature which aims to the growing demands on the applications of hot water and other industrial applications. District heating is a growing market in Greater China. However, the conventional pipes have serious corrosion issue in this...
Author(s) : Yi Zhong, Qianshi Ma, Haihua Yu
BSTRACT The residential district adopts central heating for low temperature radiators system. Due to the disrepair of the secondary heating pipe network that pipe from heat exchange station to user entrance, the running, leaking, dripping and leakage are serious, and the accidents occur frequently. The heat...
Author(s) : Amster Howard
This paper explores the use of a composite soil stiffness as a valuable design tool to consider when a pipeline traverses through poor soil conditions. Thermoplastic pipe are flexible pipe and require good soil support at the sides of the pipe to minimize deflection. However, sometimes the trench walls are weak soils...
Author(s) : Anders Andtbacka, Peter Sejersen
In March 1999, a project report on the performance of buried Thermoplastics pipes was published by TEPPFA /1/. In the report, deflection and strain data on buried pipes were analyzed and compared with calculation results from several well-known static calculation models in use in Europe. Pipes were installed to...
Author(s) : James F. Mason, Akshay Ponda, Hermann van Laak, Tobias Bauer
The long-term strength of unplasticized polyamide 12 (PA-U12) has been characterized using standard methods for plastic pressure pipe during the qualification process for use in buried piping systems for natural gas delivery operating at low ambient temperatures, usually less than 20 to 30°C at pressures...
Author(s) : Ernst van der Stok, Mirko Wenzel, Thomas Kratochvilla, Kurt Engelsing, Werner Weßing, Britta Gerets
It has not been possible to derive an accelerated procedure for the Point Load Test (PLT) as a pipe test before now. Further research and testing were therefore needed to establish appropriate requirements for standards including EN 1555-1 to rule out uncertainty in the market. The PLT is a central product test for...
Author(s) : Sunwoong Choi, Robert Stakenborghs , Pyeongan Lee, Byoungho Choi
This work developed a hydro-axial tension (HAT) test as a whole pipe axial tensile test and applied to evaluate the polyethylene (PE) pipe and fusion joints containing various flaws. HAT test was designed to utilize hydrostatic pressure to cause axial tension in pipes. The experimental and numerical analysis was...
Author(s) : Jacob John, Suresh Shenoy, Patrik Roseen
Cross-linked polyethylene (PEX) pipes continue to gain popularity in plumbing and indoor climate applications around the globe. This study focuses on increasing the sustainability of PEX pipes by utilizing recycled PEX and production waste streams into PEX production. Different methods available for recycling and the...
Author(s) : Aisha Khaleel, Suleyman Deveci, Sulistiyanto Nugroho, Fatima AlHameli
The use of polyethylene pipes in transportation networks of pressurized water and gas have shown superb performance over the history. High density, high-molecular-weight, and bi-modal polyethylene materials, known as PE80, PE100 and PE100RC, have successfully served the market for many years in standard applications....
Author(s) : Jiyong Park, JaeHyuck Han, YoungGu Kim, Eunjin Park
This study investigates the influence of various parameters on polymer design to determine the slow crack growth. HDPE(High Density Polyethylene) materials with different molecular weight distribution and comonomer content for PE100-RC pipe were investigated with cracked round bar test. The cracked round bar test...
Author(s) : Mitsuaki TOKIYOSHI, Yutaka SAWADA, Yasuhiko OTSUKI, Kensei INOUE, Takashi KURIYAMA, Toshinori KAWABATA
Polyethylene reinforced with short glass fibres (PE-sGF) pipe, manufactured by combining short fiber glass (sGF) with PE100 as a reinforcing material, has a higher pipe rigidity in the pipe circumferential direction than that of PE100 because of the reinforcing effect of the reinforcing material and a performance...
Author(s) : Kevin White, Shad Sargand
The current standard of practice for the installation of agricultural mains is in accordance with ASTM F449, Standard Practice for Subsurface Installation of Corrugated Polyethylene Pipe for Agricultural Drainage or Water Table Control. ASTM F449 has several limitations. Currently, the allowable maximum height of...
Author(s) : Shane Schuessler, Richard Coombs, Mohamed Hageb, Abdullah Saber, Grigorios Vigellis, Chandra Basavaraju
Bordered by Rwanda and the Democratic Republic of Congo sits Lake Kivu, an African Great Lake formed along the East African Rift. Lake Kivu is one of the world’s deepest freshwater lakes and contains enormous quantities of dissolved carbon dioxide and methane gas held at depths greater than 1100 feet (350 meters)....
Author(s) : Chantz Denowh, Robert Stakenborghs, Liang Yu
The use of spoolable reinforced thermoplastic pipe (RTP) technologies in the onshore oil and gas industry has expanded significantly over the past decade. It is anticipated that interest will only continue to grow as oil and gas operators transition to transporting alternative fuels such as hydrogen and carbon...
Author(s) : Amster Howard
This paper focuses on the confusing plethora of choices that a design engineer in the United States faces when selecting installation instructions for buried pressure thermoplastic pipelines. For polyethylene pipe, the decision is between AWWA Manual M55, ASTM D2774, ASTM F1668, the PPI Handbook, MAB-3, PE Field...
Author(s) : Chris Greggs
Much has been done to improve the quality and efficiency of HDPE pipe installations over the years. Now, a totally new concept for fusion where the machine meets the pipe where it lays to improve worksite safety, boost jobsite efficiency, and minimize the amount of time spent between fusions has been developed. This...
Author(s) : Jay Parvez, Richard Nichols
All thermoplastic and thermoset pipes must consider the impacts of cyclic loading on overall performance. Since its first use, PVC pipes have been tested for its resilience to such loading. As testing evolved over time, the method to determine cyclic capacity for gasketed PVC pipes has improved. Previously, the...
Author(s) : Chris Ziu, Deanne Hughes, Steve Sandstrum
Plastic pipe is an environmentally responsible choice for a broad array of piping applications. The exceptional chemical/corrosion resistance, superior joining techniques and overall durability of these piping products have resulted in industry-leading life-cycle analyses (LCA’s) in the applications for which they...