Our site uses cookies necessary for its proper functioning. To improve your experience, other cookies may be used: you can choose to disable them. This can be changed at any time via the Cookies link at the bottom of the page.


Unimodal mdpe (PE 2708/ PE 80) pipe materials significantly improve abrasion resistance in slurry flow applications

 

Papers

Plastic Pipes Conference Association # 2018 Las-Vegas

Ashish M. Sukhadia, Wes Long

Polyethylene (PE) pipe is a frequent choice for transporting slurry solutions. It has proven to have superior wear resistance than other pipe materials. For example, when carrying fine grain slurries, polyethylene pipe has been shown in laboratory tests to be three to five times more wear resistant than steel pipes. Abrasion resistance of plastics is dependent on numerous factors – the nature of the plastic, surface roughness, lubricating agents, load, material hardness, and others. Contrary to intuitive belief, abrasion resistance of plastics does not correlate directly with hardness. Test data will be presented to show that unimodal medium-density PE (MDPE) pipe provides at least 30 % greater abrasion wear resistance compared to other high-density PE (HDPE) pipes tested, translating to longer service life in these application areas. We will attempt to explain these results based on the polymer structure-property fundamentals governing the abrasion response of polymers.

Three different polyethylene (PE) pipe grade resins were compared for abrasion wear resistance performance. The three PE grades were - (1) a unimodal medium density PE, (2) a unimodal high-density PE and (3) a bimodal high-density PE. Testing was performed to measure the resistance to wear due to slurry abrasion at both ambient temperature (73 °F) and at elevated temperature (140 °F). The testing was done per ASTM G75-15, “Standard Test Method for Determination of Slurry Abrasivity (Miller Number) and Slurry Abrasion Response of Materials (SAR Number)”. Contrary to intuitive expectations, the results showed that the unimodal MDPE pipe provided at least 30 % greater abrasion wear resistance compared to two other HDPE pipes tested. The data also supported similar slurry abrasion wear resistance performance at the elevated temperature. These abrasion wear results were investigated further from the polymer fundamentals standpoint. It was shown that these results were due to the particular polymer structureproperty interactions relating to the “effective number of physical cross-links per macromolecular chain”, a concept originally proposed in the literature by T. A. Tervoort et al. (Macromolecules., 35, 8467-8471, 2002). Based on the results of this investigation, it is shown that the unimodal MDPE pipe is expected to perform very well in slurry flow applications and is indicated to be a better choice than other higher density polyethylene pipe materials due to its better resistance to abrasion.

Related keywords : Abrasion Resistance, polyethylene, MDPE, Pipe, Slurry Flow, Wear.
Please note that the whole article content is available on PPCA website only :

Related papers

2021 Amsterdam : A NEW GENERATION OF HIGH PERFORMANCE BIAXIALLY ORIENTED POLYETHYLENE AND POLYPROPYLENE PRESSURE PIPES

Author(s) : A. Taraiya, P. Degenhart, M. Soliman, M. Boerakker, R. Handstanger, R. Kleppinger

Since the introduction of polyolefins for pressure pipes, continuous improvements have been made to meet ever-higher demands on their performance and to expand their application window beyond their original scope, mostly based on new resin formulations. Today, we also continue to push the limit to provide better...

2021 Amsterdam : A TRADE ASSOCIATION EXPLORED

Author(s) : Drew Mueller, Peter Dyke

HDPE Pipe holds a dominant position in several markets in North America: natural gas distribution, oil patch, mining, landfill and geothermal. So why are polyethylene’s municipal water and wastewater market shares so much lower than these other industries? How has the polyethylene industry been successful in growing...

2021 Amsterdam : AN EVIDENTIAL APPROACH TO USE OF POLYETHYLENE PIPE FOR HYDROGEN FUEL GASES

Author(s) : Derek Muckle

A technical program has been undertaken to provide evidence on the suitability of polyethylene pipe and fitting systems for the distribution of hydrogen fuel gas. The underlying principle has been to evaluate material in the form of a pipe and to consider the performance of the pipe and of the welded jointing systems...

2021 Amsterdam : APPLICATION OF PP-R COMPOSITE REINFORCED PIPES IN HOT AND COLD WATER SYSTEMS

Author(s) : Lei Wang, Guozhi Xu, Qiaoping Qiu, Weihua Lu, Yanwang Han

PP-R (random copolymerized polypropylene) has been widely used in hot and cold water systems. However, the standard PP-R pipes have the disadvantages of a large high-temperature thermal expansion coefficient, an insufficient notched impact strength, and a low temperature and pressure resistance. In this paper, a new...

2021 Amsterdam : CHALLENGING THE 10% WALL THICKNESS RULE FOR HDPE MARINE PIPELINES

Author(s) : Ilija Radeljic, Ebbe Smith

HDPE pipe can be relatively easily scratched during the manipulation on the site, which is especially true for the marine pipelines. Installing the scratched marine pipe with the S bend method presents a risk and repair methods are usually performed. Currently, there is no standard defining the repair procedure, in...

2021 Amsterdam : DESIGN OF A DISTRIBUTED STRAIN MONITORING SYSTEM FOR HDPE WATER PIPELINES CROSSING AN EARTHQUAKE FAULT

Author(s) : Peter Hubbard, Linqing Luo, Andrew Yeskoo, Kenichi Soga, Krista (Moita) Araica, Gus Cicala, Marshall McLeod

Seismically active faults pose a risk to buried water pipelines that can be complicated to quantify. Fault type, slip rate, pipeline geometry, and soil conditions all factor into a complex soil-pipeline interaction. For critical pipelines that cross faults, high-density polyethylene (HDPE) has become an attractive...

2021 Amsterdam : DEVELOPMENT OF A RAPID AND INNOVATIVE IN-FACTORY PROCEDURE FOR TESTING THE PERFORMANCES OF PE PIPES CONTAINING VARIOUS PROPORTIONS OF RECYCLED POLYMER MATERIAL

Author(s) : Dominique GUEUGNAUT, Pascal AUSSANT, Romuald BOUAFFRE, Myriam BECHROURI

Concerns regarding the environment and sustainable development have revived interest in the reprocessing and re-use of polymer materials from manufactured objects that have reached the end of their operating life. Within this framework, formal professional agreements have been put in place at global level under the...

2021 Amsterdam : EFFECT OF CHLORINATED WATER ON THE FATIGUE CRACK GROWTH RESISTANCE OF POLYETHYLENE COMPOUNDS WITH RECYCLATE CONTENT FOR PIPE APPLICATIONS

Author(s) : Paul J. Freudenthaler, Joerg Fischer, Mathias Eder, Reinhold W. Lang

For controlled water disinfection, typically chlorine is used and preliminary studies demonstrate its aging and crack growth acceleration effects on polyolefin pipe materials [1, 2]. Although the use of recycled plastics is not prohibited in some ISO standards for polyolefin piping systems [3–5], only small amounts...

2021 Amsterdam : EFFECT OF INSUFFICIENT HOMOGENIZATION DURING THE EXTRUSION OF POLYETHYLENE PIPES ON BUTT FUSION JOINT INTEGRITY

Author(s) : Mike Troughton, Amir Khamsehnezhad, Changyi Yu

When butt fusion welding polyethylene (PE) pipes in the field, it is often specified that the pipes must undergo fusibility testing in all combinations of suppliers, diameters and thicknesses before being fused in production. This is a very onerous and expensive task, but must be carried out to ensure that the PE...

2021 Amsterdam : EVALUATION OF MECHANICAL PROPERTIES AND LONG- TERM DURABILITY OF AGED POLYETHYLENE PIPES FOR GAS DISTRIBUTION

Author(s) : Shuhei Nishida, Shintaro Iwasaki, Hidefumi Yamanaka, Takahiro Kasatani

Polyethylene pipelines have been used for natural gas service applications for over 40 years in Japan. It is thought that they will continue to be used widely for many years. Therefore, it is important to confirm the conditions of the existing pipelines being used for the long term. In this study, polyethylene pipes...

2021 Amsterdam : EXPERIMENTAL DETERMINATION OF THE EFFECTS OF LIQUID HYDROCARBONS ON THE LONG-TERM CREEP RUPTURE PROPERTIES OF PRESSURE PIPE GRADE UNPLASTICIZED POLYAMIDE-12

Author(s) : James F. Mason, Akshay Ponda, Hermann van Laak, Buc Slay

The effects of liquid hydrocarbons on long term strength of pipe grade thermoplastic resins is an important consideration when designing pressure pipe for use in the oil and gas industry. There is an extensive body of work going back several decades descri bing these effects for pipe grade polyethylenes, and all...

2021 Amsterdam : FINDING THE RIGHT PIPE TEST FOR POLYETHYLENE WITH RAISED RESISTANCE TO SLOW CRACK GROWTH

Author(s) : Ernst van der Stok

For PE 100-RC, two tests are still under development for pipes: the point load test (PLT) and the accelerated notch pipe test (aNPT). The PLT was developed by a project group consisting of manufacturers and end users. The PLT determines the resistance to point loads as they can occur in practice. An earlier study...

2021 Amsterdam : FINITE ELEMENT METHOD (FEM) USED TO SIMULATE THE STRESS/STRAIN OF THE POINT LOAD TEST (PLT) IN A BROADER STUDY TO SUPPORT THE FUTURE ISO TEST STANDARD

Author(s) : S. Nestelberger, J. Cheng

The Point Load Test (PLT) [‎ 1, ‎ 2] was designed to simulate the SCG (slow crack growth) failure initiated by a rock pressing into the exterior wall of a polymer pipe. Today’s PE materials sustain long PLT testing times, due to its high SCG resistance design. Consequently, an accelerated “PLT+” with the support...

2021 Amsterdam : FLOWABLE FILL FOR PLASTIC PIPE

Author(s) : Amster Howard

Flowable fill is used for many applications, but mainly for pipe trench embedment and backfill. There are three ways that using flowable fill can be kind to the environment. Because flowable fill is self-leveling and has a strength greater than the native soil, the trench cross section can be minimized. This means...

2021 Amsterdam : FROM MULTILAYER LAMINATES TO INDUSTRIAL PIPE APPLICATIONS – A GUIDELINE

Author(s) : Gerald Pinter, Johannes Wiener, Florian Arbeiter, Abhishek Tiwari, Otmar Kolednik

For pipe applications, catastrophic failure due to crack growth has to be prevented by all means. Techniques to develop new and even tougher pipe materials are explored in this contribution. The aim is to create a multi-layer architecture, that exhibits high toughness as well as damage tolerance towards sharp notches....

2021 Amsterdam : HYDROGEN TRANSPORT IN POLYMER PIPES FOR NATURAL GAS DISTRIBUTION – TEN YEARS OF EXPERIENCE

Author(s) : Stephan Kneck, Henrik Iskov

It has become ever clearer that the resources of natural gas are an energy source, which will be less important in the future due to limitations in use of natural reserves. In order to prepare for the future the gas industry is looking at the alternative fuel gases, one such fuel gas is hydrogen. In order to prepare...

2021 Amsterdam : INNOVATIVE MILLIMETER WAVE TECHNOLOGY FOR MEASURING THE PIPE WALL THICKNESS EARLY IN THE EXTRUSION PROCESS

Author(s) : Christian Schalich

Plastic pipes for infrastructure and building applications are precisely specified with regards to wall thickness and diameter. Pipe manufacturers use different measuring methods in order to ensure the required dimensional accuracy and maintain a constant high quality. This paper introduces a measuring system based on...

2021 Amsterdam : MECHANICAL INTERGRITY OF HDPE BUTT FUSION JOINTS – EFFECT OF CARBON BLACK DISTRIBUTION

Author(s) : Suleyman Deveci, Nisha Preschilla, Sulistiyanto Nugroho, Birkan Eryigit

Carbon black (CB) has been used as a perfect and the cheapest solution to prevent photo degradation of polyethylene against UV light exposure. The effect of carbon black on the mechanical properties of polyethylene pipes was studied extensively, but only on well dispersed and distributed carbon black...

2021 Amsterdam : MOBILE EXTRUSION TECHNOLOGY - A CASE STUDY USING INNOVATIVE MEANS OF ASSURING HDPE PIPE SUPPLY (IN BOTH THE PERMIAN BASIN OF WEST TEXAS AND THE MINING REGION OF CENTRAL FLORIDA)

Author(s) : White G. Jee, Wes Long, Marcello Russo

In 2018, the North American HDPE pressure pipe market experienced unprecedented demand and growth especially in the region of the Permian basin in west Texas. 1 As aninnovative means of increasing HDPE pipe supply in this region, the first modular mobile extrusion plant was moved to Pecos, TX. Using custom designed...

2021 Amsterdam : NEW CROSSLINKED POLYETHYLENE PIPES WITH HIGH THERMAL STABILITY AND LOW PERMEATION FOR PETROLEUM ENGINEERING

Author(s) : Gisbert Rieß, Katrin Berger, Anna Kaltenegger-Uray, Florian Arbeiter

The effect of electron-beam and silane crosslink of polyethylene on the resulting permeation characteristics was investigated. Polyethylene sheets were processed and crosslinked by irradiation with high energy electrons and by grafting and subsequent hydrolysis of organosilanes during a reactive extrusion process. The...

Members of the Association

BOREALISBOROUGEFormosa Plastics CorporationHanwha TotalEnergiesINEOS O&PIRPCKorea Petrochemical IND. Co., LTD (KPIC)LyondellBasellORLEN UnipetrolPetroChina Dushanzi Petrochemical CompanyPRIME POLYMERSABICSCG Chemicals & Thai PolyethyleneSinopecTASNEE