Papers
Plastic Pipes Conference Association # 2016 Berlin
Carlos Domínguez, Nuria Robledo, Rafael A. García-Muñoz
With the last advances and improvements in the polyethylene resins used for pipe application, new methods for evaluating long-term mechanical properties need to be introduced. Standard PENT and FNCT tests needs more than one year for characterizing the new PE100RC grades with the consequent thermal ageing problems. Strain Hardening modulus (SH) determination at 80ºC seems to be one of the best alternatives. Correlation between SH method and classic SCG tests are reported on this work. It is proved that the method guarantees a rapid and accurate evaluation.
Slow Crack Growth (SCG) resistance is the main property that must be controlled for assessing the long-term performance on polyethylene resins used for pipe application. Fourth generation PE resins have shown very high resistance to slow crack growth, with failure times even higher than one year at the standard temperature of 80ºC used in conventional tests like Full Notch Creep Test (FNCT), Pennsylvania Notched Tensile Test (PENT), Notch Pipe Test (NPT) and Point Loading Test (PLT). More severe conditions increasing temperature and load for PENT and FNCT tests have been proposed in recent years with significant reduction on the failure time. These stricter test conditions must be rigorously controlled due to the possibility that the SCG was not the main process that regulates the failure mechanism of the resin. For that purpose, the failure morphology inspection and the crack opening displacement (COD) curve have been evaluated to assess such failure mechanism.
On the other hand, among the different alternatives to conventional methods that are being developed to accelerate the resin evaluation, the Strain Hardening (SH) modulus determination at 80ºC is becoming as the best alternative for the evaluation of the SCG process. Thus, the SH modulus has been determined for a wide range of PE resins grades. The results show that the method guarantees a rapid and accurate evaluation. Additionally, the method unexpectedly displayed remarkable differences in resins with the same SCG resistance measured by conventional methods but with different comonomer type used in the resin synthesis. To the best of our knowledge, this is the first report where these differences are depicted.
Related papers
Author(s) : Ajay Taraiya, Peter Degenhart, Mark Boerakker
In PPXX, a technology was presented for the first time that could bi-axially orient polyolefin pipes. With this technology, it is possible to prepare pipes that have a performance far beyond the standard ones. One approach to achieving this performance is via a continuous in-line process. To optimize the in-line...
Author(s) : Olivera Bilic, Vivek Rohatgi, Brody Peterson, David Hukill
Demand for conduit pipe is expected to surge globally due to rapid industrialization and urbanization in residential and commercial sectors. Just in the U.S., according to Market Research analysis, expected growth of the plastic conduit pipe market is at a CAGR of more than 5% over the next ten years. In response to...
Author(s) : Federico Muñoz
Following the recent approval of European Standards series EN 1555 for Polyethylene piping systems for the supply of gaseous fuels which introduces the PE100RC, a new material with enhanced resistance to Slow Crack Growth (SCG) and anticipating the imminent revision of European Standard series EN 12201 for...
Author(s) : Kevin Copher, Patrick Vibien
High Density Polyethylene (HDPE) conduit is a durable product designed to protect cables for multiple generations buried underground or encased in concrete. Conduit is subject to coiling stresses, installation stresses and in-service stresses, such as those generated from installed curvature, soil loading, or rock...
Author(s) : Chris Ampfer, P.E., Harvey Svetlik, P.E.
The current polyethylene (PE) pipe bending limits (longitudinal and circumferential deflection) are based on a circumferential (tangential) strain tolerance limit of approximately 1%. Research in the late 1970’s using constant tensile strain focused on what strain can be imposed on HDPE by bending and not have it...
Author(s) : Shawn R Coombs, PE
Pipelines through embankments should be designed to withstand extreme weather-related events and everyday stressors. As extreme weather-related events are on the rise because of climate change, it is important to ensure proper design, construction, and inspection practices are understood and executed. This paper...
Author(s) : James F. Mason, Akshay Ponda, Hermann van Laak, Tobias Bauer
The long-term strength of unplasticized polyamide 12 (PA-U12) has been characterized using standard methods for plastic pressure pipe during the qualification process for use in buried piping systems for natural gas delivery operating at low ambient temperatures, usually less than 20 to 30°C at pressures...
Author(s) : Dr. Michael Pluimer, Sara Stone
The Notched Constant Ligament Stress test (NCLS test, ASTM F2136)[1] is a test method that measures the slow crack growth in High Density Polyethylene. The NCLS test requires a notch on all test specimens to act as a stress concentration at that point so crack propagation can be easily predicted and studied. In...
Author(s) : Ernst van der Stok, Mirko Wenzel, Thomas Kratochvilla, Kurt Engelsing, Werner Weßing, Britta Gerets
It has not been possible to derive an accelerated procedure for the Point Load Test (PLT) as a pipe test before now. Further research and testing were therefore needed to establish appropriate requirements for standards including EN 1555-1 to rule out uncertainty in the market. The PLT is a central product test for...
Author(s) : Sunwoong Choi, Robert Stakenborghs , Pyeongan Lee, Byoungho Choi
This work developed a hydro-axial tension (HAT) test as a whole pipe axial tensile test and applied to evaluate the polyethylene (PE) pipe and fusion joints containing various flaws. HAT test was designed to utilize hydrostatic pressure to cause axial tension in pipes. The experimental and numerical analysis was...
Author(s) : Norbert Jansen
A practical requirement of temperature resistance of minimum 50 years at 70°C was established for the extra high voltage (EHV) corridor projects in Germany. Experts have debated what tests are best suited to prove the suitability of a pipe resin for cable protection pipes which may be installed hastily and under...
Author(s) : Aisha Khaleel, Suleyman Deveci, Sulistiyanto Nugroho, Fatima AlHameli
The use of polyethylene pipes in transportation networks of pressurized water and gas have shown superb performance over the history. High density, high-molecular-weight, and bi-modal polyethylene materials, known as PE80, PE100 and PE100RC, have successfully served the market for many years in standard applications....
Author(s) : Jessica Hinczica, Mario Messiha, Florian Arbeiter, Gerald Pinter
In Europe, only 1.8 million tons of recycled material is processed in new products within the building and construction sector [1]. Recyclates and blends of recyclates with virgin materials are already used for different products in the plastic pipe industry, such as cable trays, or storm water management...
Author(s) : Jiyong Park, JaeHyuck Han, YoungGu Kim, Eunjin Park
This study investigates the influence of various parameters on polymer design to determine the slow crack growth. HDPE(High Density Polyethylene) materials with different molecular weight distribution and comonomer content for PE100-RC pipe were investigated with cracked round bar test. The cracked round bar test...
Author(s) : Michael Pluimer, Christian Herrild, Patrick Vibien
With enhanced interest in a circular economy and the potential use of recycled HDPE within HDPE conduit, a research project was undertaken to investigate the necessary technical requirements when using recycled HDPE. High Density Polyethylene (HDPE) conduit is a durable product designed to protect cables...
Author(s) : Rafael A. García-Muñoz, Rafael Juan, Mónica de la Cruz, Beatriz Paredes, Carlos Domínguez
Plastics are widely used in various industries, resulting in the generation of significant amounts of plastic waste, which causes environmental and economic problems. Although mechanical recycling is the most commonly employed technology, the resulting recyclates often suffer from degradation and contamination. This...
Author(s) : Carine Lacroix, Philippe Louvel, Danielle Mark, Dominique Gueugnaut
A test program was carried out on two Polyamide resins, Polyamide 11 (PA11) and Polyamide 12 (PA12), both certified for gas networks. Polyamide’s advantage lies in its implementation, similar to that of polyethylene, and its properties allowing it to operate at up to 18 bar for gas, all other conditions being equal....
Author(s) : Gerald Pinter, Lukas Travnicek, Johannes Wiener, Jan Poduska, Florian Arbeiter, Pavel Hutar
Crack initiation and subsequent crack growth are known to be the key factors which determine the final lifetime of a polymeric pipe. Subsequently, exact knowledge regarding the crack growth behavior is a key issue to guarantee safe operation. Furthermore, novel concepts are needed to satisfy increasing demands, for...
Author(s) : Márton Bredács, Jutta Geier, Mario Messiha, Gernot Oreski, Gerald Koinig, Raphael Horvath, Szilveszter Gergely, Gerald Pinter
In 2020, the global plastics production was 367 million tons. In Europe 20 % was used in the building and construction sector to manufacture in significant proportion polyethylene (PE) and polypropylene (PP) pipes [1]. To increase the current 30 % recycling rate, it is crucial to improve the quality of recyclates and...
Author(s) : Yanlei Hu, Jin Sun
Slow crack growth is the main reason for brittle failure of polyethylene pipes. At present, the traditional slow crack growth test generally has many problems, such as too long test time, using chemical reagents that pollute the environment, poor reproducibility, etc., which limit the accurate evaluation of the slow...