Papers
Plastic Pipes Conference Association # 2018 Las-Vegas
Dominique GUEUGNAUT, Adil BOUJLAL, Aymeric LOPITAUX, Bertrand SEVRE
A special concept has been developed by GRTgaz Research and Innovation Center for Energy (RICE) for temperature mapping at the interface of an electrowelded assembly.The technical solution consists of a tubular piece in place of the real PE pipe, made of a non-weldable polymer with thermal parameters close to those of the PE. A series of 179 temperature sensors are integrated in this dummy pipe with an optimized arrangement which allows a thermal mapping of the interface in real time during the overall welding cycle. On the basis of the temperatures field, an “interdiffusion parameter” is calculated at each discrete location and compared to reference values attached to the different PE grades. Then it becomes possible to evaluate the weld quality beforehand in terms of design and welding conditions. Provided that some improvements and supplementary verifications are made, the technical solution as proposed can be implemented in a laboratory during qualification or batch release phases, or in the course of production monitoring. It can also be used as an expert tool for the geometrical and electrical sizing of EF fittings during their design phase.
The electrofusion (EF) technique is used worldwide for jointing of polyethylene (PE) pipes. Implemented in the rules-of-the-art, the EF technique is reliable and safe. Nevertheless and despite both its maturity and the quality system around, the field feedback reveals some divergences which need to be addressed. Such dvergences justify the implementation of complementary techniques allowing a control of some of the major parameters which govern the process, independently of the operator skills. It is now recognized that the weld quality is linked to the completion of the macromolecular interdiffusion which takes place during the welding cycle. In turn the interdiffusion process is temperature and time dependent. Consequently it is of primary importance to have a good knowledge of the way the fittings deliver the thermal energy during the welding cycle. On the basis of the interdiffusion theory, the Research and Innovation Center for Energy (RICE) has defined a minimum quality level taking into account the physicochemical parameters of the PE to be joined. For this purpose it is necessary to have at disposal the temperature profiles at the interface pipe-fitting in real time during the welding cycle. The technical solution proposed by RICE consists of a tubular piece in place of the real PE pipe, made of a non-weldable polymer with thermal parameters as close as possible to those of the PE. 179 temperature sensors are integrated in this piece with an optimized arrangement which allows a thermal mapping of the interface in real time during the overall welding cycle (heating+cooling). Then, on the basis of the temperatures field, an “interdiffusion parameter” is calculated at each discrete location and compared to reference values attached to the different PE grades. These reference values are defined beforehand by means of specific laboratory tests carried out on micro specimens, according to the original methodology designed by RICE in the early nineties. This device has been used for characterizing different 63 mm saddles and 20 mm couplers (equipping the saddle outlet).The different tests campaigns reveal some heterogeneities in the temperature fields depending on both the design of the saddle and the way the energy is delivered (electric coil arrangement, wire electrical resistivity,...). Moreover, the tests allow to evaluate the efficiency of the specified corrections of the heating time with regard to the ambient temperature ranged between -10°C and +45°C. Then the data allow an exact determination of the time at which the material has recovered the solid state after crystallization, thus giving way to a safe handling of the welded assembly by the field operator. Such a laboratory device is easy to use and reusable since it is not weldable. In addition, it guarantees a perfect and reproducible positioning of the temperature sensors with regard to the interface pipe-fitting. This device could constitute a valuable tool to check the energy delivered by a fitting either during the conception phase of the product or during the industrial production.
Related papers
Author(s) : A. Taraiya, P. Degenhart, M. Soliman, M. Boerakker, R. Handstanger, R. Kleppinger
Since the introduction of polyolefins for pressure pipes, continuous improvements have been made to meet ever-higher demands on their performance and to expand their application window beyond their original scope, mostly based on new resin formulations. Today, we also continue to push the limit to provide better...
Author(s) : Derek Muckle
A technical program has been undertaken to provide evidence on the suitability of polyethylene pipe and fitting systems for the distribution of hydrogen fuel gas. The underlying principle has been to evaluate material in the form of a pipe and to consider the performance of the pipe and of the welded jointing systems...
Author(s) : Peter Hubbard, Linqing Luo, Andrew Yeskoo, Kenichi Soga, Krista (Moita) Araica, Gus Cicala, Marshall McLeod
Seismically active faults pose a risk to buried water pipelines that can be complicated to quantify. Fault type, slip rate, pipeline geometry, and soil conditions all factor into a complex soil-pipeline interaction. For critical pipelines that cross faults, high-density polyethylene (HDPE) has become an attractive...
Author(s) : Dominique GUEUGNAUT, Pascal AUSSANT, Romuald BOUAFFRE, Myriam BECHROURI
Concerns regarding the environment and sustainable development have revived interest in the reprocessing and re-use of polymer materials from manufactured objects that have reached the end of their operating life. Within this framework, formal professional agreements have been put in place at global level under the...
Author(s) : Paul J. Freudenthaler, Joerg Fischer, Mathias Eder, Reinhold W. Lang
For controlled water disinfection, typically chlorine is used and preliminary studies demonstrate its aging and crack growth acceleration effects on polyolefin pipe materials [1, 2]. Although the use of recycled plastics is not prohibited in some ISO standards for polyolefin piping systems [3–5], only small amounts...
Author(s) : Mike Troughton, Amir Khamsehnezhad, Changyi Yu
When butt fusion welding polyethylene (PE) pipes in the field, it is often specified that the pipes must undergo fusibility testing in all combinations of suppliers, diameters and thicknesses before being fused in production. This is a very onerous and expensive task, but must be carried out to ensure that the PE...
Author(s) : Shuhei Nishida, Shintaro Iwasaki, Hidefumi Yamanaka, Takahiro Kasatani
Polyethylene pipelines have been used for natural gas service applications for over 40 years in Japan. It is thought that they will continue to be used widely for many years. Therefore, it is important to confirm the conditions of the existing pipelines being used for the long term. In this study, polyethylene pipes...
Author(s) : Ernst van der Stok
For PE 100-RC, two tests are still under development for pipes: the point load test (PLT) and the accelerated notch pipe test (aNPT). The PLT was developed by a project group consisting of manufacturers and end users. The PLT determines the resistance to point loads as they can occur in practice. An earlier study...
Author(s) : S. Nestelberger, J. Cheng
The Point Load Test (PLT) [ 1, 2] was designed to simulate the SCG (slow crack growth) failure initiated by a rock pressing into the exterior wall of a polymer pipe. Today’s PE materials sustain long PLT testing times, due to its high SCG resistance design. Consequently, an accelerated “PLT+” with the support...
Author(s) : Dr. Holger Brüning, Serge Hascoët, Yann Delanne, Didier Nozahic, Jawdat Mansour, José Santana
RTE operates, maintains and develops the French electricity network, including the High and very High Voltage cable lines. Their network is the largest in Europe and includes over 6400 km of underground HV links operated in 2018. The company is modernizing and developing its network by investing 1.5 billion euros per...
Author(s) : Stephan Kneck, Henrik Iskov
It has become ever clearer that the resources of natural gas are an energy source, which will be less important in the future due to limitations in use of natural reserves. In order to prepare for the future the gas industry is looking at the alternative fuel gases, one such fuel gas is hydrogen. In order to prepare...
Author(s) : Christian Schalich
Plastic pipes for infrastructure and building applications are precisely specified with regards to wall thickness and diameter. Pipe manufacturers use different measuring methods in order to ensure the required dimensional accuracy and maintain a constant high quality. This paper introduces a measuring system based on...
Author(s) : Suleyman Deveci, Nisha Preschilla, Sulistiyanto Nugroho, Birkan Eryigit
Carbon black (CB) has been used as a perfect and the cheapest solution to prevent photo degradation of polyethylene against UV light exposure. The effect of carbon black on the mechanical properties of polyethylene pipes was studied extensively, but only on well dispersed and distributed carbon black...
Author(s) : Gisbert Rieß, Katrin Berger, Anna Kaltenegger-Uray, Florian Arbeiter
The effect of electron-beam and silane crosslink of polyethylene on the resulting permeation characteristics was investigated. Polyethylene sheets were processed and crosslinked by irradiation with high energy electrons and by grafting and subsequent hydrolysis of organosilanes during a reactive extrusion process. The...
Author(s) : Alex Stolarz, Klaus Grønnegaard Lauridsen
Low temperature District Heating – COOL DH – addresses the challenges of the upcoming decades in the energy sector for new housing developments. Energy efficiency is an important aspect of modern building construction. Improved building insulation and other technologies result in lower heat demand and enable new...
Author(s) : Ulrich Schulte, Dr. -Ing. Joachim Hessel
In order to protect the Austrian lakes effectively against the discharge of effluent, a 13 km long pressure pipeline made of high density polyethylene was laid on the bottom of Lake Ossiach back in 1971. The DN355 to DN200 pipes were produced from a first generation HDPE-compound. The classification would have been...
Author(s) : Xinwen Yu, Aimin Xiang, Dongyu Fang, Peck Tze Kang, Jinghui Li
The Chinese PE water pipe market has developed significantly in recent years and particularly over the last 12 months. Against a background of water scarcity and growing urbanization, this evolving market has grown significantly in both size and quality awareness. On the back of past experiences, a fundamental...
Author(s) : Justin Brandt, Mike Griffin, Tony Cuvo
As plastic pipe gains share in new markets and applications, additional joining methods add further value, enabling continued growth for plastic pipes. To date, definitions of a “fit-for-purpose” mechanical joint for High Density Polyethylene (HDPE) pressure piping systems can vary significantly. As such, mechanical...
Author(s) : Mark Boerakker, Rudy Deblieck, a Harm Caelers, Arno Wilbers, Tine Boonen a DSM, Britta Gerets, Mirko Wenzel
Components made of plastic are facing ever-increasing demands with respect to their production, use and durability. This also holds for gas and drinking water pressure pipes made of high-density polyethylene (PE-HD), where service lifetimes of up to 50 years and in some cases even 100 years are required. One of the...
Author(s) : Hua Ye, Sun Jin, Wei Ruoqi
As a safe, clean, low-carbon and reliable energy source, nuclear power, together with hydropower and coal power, constitutes the three pillars of the world's energy supply and play an important role in the world's energy structure.With the strong support of national policies, China's nuclear energy has entered a new...