Papers
Plastic Pipes Conference Association # 2018 Las-Vegas
Gerald Pinter, Florian Arbeiter, Johannes Wiener, Andreas Frank, Otmar Kolednik
In order to further increase the fracture toughness of pipes, biomimetic layer design of the pipe wall can be used. Therein, soft polymer interlayers can act as crack-arresters in a matrix of stiffer and inherently more brittle polymers. The effectiveness of the crack arresting role of soft interlayers in a multi-layer system was investigated by applying elastic plastic fracture mechanics. Bending tests using the J-integral as toughness parameter were performed. Preliminary results confirmed that fracture toughness in the vicinity of the soft layers could indeed be increased to multiples of the matrix values.
This work aims to offer some insight into the advantages of biomimetic multi-layered materials, the mechanisms behind their unique properties and the applicability of bio-inspired structures for engineering applications. The layered structure of the deep-sea sponge serves as an idea giver for future multi-layered pipewall design. After millions of years of evolution this marine animal has developed a skeleton that combines high stiffness with high fracture toughness by using soft protein layers inside a brittle bio-glass matrix [1]. However, the question remains, whether these principles can be adapted for engineering materials.
An unreinforced polymer and a mineral reinforced polymer were used to mimic the deep-sea sponge’s structure in an effort to achieve advantageous material properties. Due to non-linear behavior of both materials, it is necessary to apply elastic plastic fracture mechanics. J-integral was used to accurately describe the material’s fracture toughness. Single edge notch bending (SENB) tests were performed to measure the effect of a single soft interlayer on the crack resistance. The comparison between a bio-inspired multi-layer structure and a homogeneous material revealed a significant increase in fracture toughness due to the biomimetic design.
Related papers
Author(s) : A. Taraiya, P. Degenhart, M. Soliman, M. Boerakker, R. Handstanger, R. Kleppinger
Since the introduction of polyolefins for pressure pipes, continuous improvements have been made to meet ever-higher demands on their performance and to expand their application window beyond their original scope, mostly based on new resin formulations. Today, we also continue to push the limit to provide better...
Author(s) : Drew Mueller, Peter Dyke
HDPE Pipe holds a dominant position in several markets in North America: natural gas distribution, oil patch, mining, landfill and geothermal. So why are polyethylene’s municipal water and wastewater market shares so much lower than these other industries? How has the polyethylene industry been successful in growing...
Author(s) : Derek Muckle
A technical program has been undertaken to provide evidence on the suitability of polyethylene pipe and fitting systems for the distribution of hydrogen fuel gas. The underlying principle has been to evaluate material in the form of a pipe and to consider the performance of the pipe and of the welded jointing systems...
Author(s) : Lei Wang, Guozhi Xu, Qiaoping Qiu, Weihua Lu, Yanwang Han
PP-R (random copolymerized polypropylene) has been widely used in hot and cold water systems. However, the standard PP-R pipes have the disadvantages of a large high-temperature thermal expansion coefficient, an insufficient notched impact strength, and a low temperature and pressure resistance. In this paper, a new...
Author(s) : Ilija Radeljic, Ebbe Smith
HDPE pipe can be relatively easily scratched during the manipulation on the site, which is especially true for the marine pipelines. Installing the scratched marine pipe with the S bend method presents a risk and repair methods are usually performed. Currently, there is no standard defining the repair procedure, in...
Author(s) : Andreas Moerman, Flip van der Valk, Mirjam Blokker KWR, Tjakko Haaijer, Jan Vreeburg,
Drinking water companies with ageing networks are facing vast amounts of drinking water network reconstructions during the coming decades. This development coincides with the energy transition, which puts pressure on the available space underground. These external drivers give drinking water companies an opportunity...
Author(s) : Joe Babcanec, P.E., Dan Currence, P.E.
The newly released Drainage Handbook provides complete guidance on corrugated polyolefin pipe. Perhaps the biggest contribution this new handbook makes to the advancement of both HDPE and PP corrugated plastic pipe is the design procedure presented. The design procedure reflects the industry’s recommended practice...
Author(s) : Paul J. Freudenthaler, Joerg Fischer, Mathias Eder, Reinhold W. Lang
For controlled water disinfection, typically chlorine is used and preliminary studies demonstrate its aging and crack growth acceleration effects on polyolefin pipe materials [1, 2]. Although the use of recycled plastics is not prohibited in some ISO standards for polyolefin piping systems [3–5], only small amounts...
Author(s) : James F. Mason, Akshay Ponda, Hermann van Laak, Buc Slay
The effects of liquid hydrocarbons on long term strength of pipe grade thermoplastic resins is an important consideration when designing pressure pipe for use in the oil and gas industry. There is an extensive body of work going back several decades descri bing these effects for pipe grade polyethylenes, and all...
Author(s) : Ernst van der Stok
For PE 100-RC, two tests are still under development for pipes: the point load test (PLT) and the accelerated notch pipe test (aNPT). The PLT was developed by a project group consisting of manufacturers and end users. The PLT determines the resistance to point loads as they can occur in practice. An earlier study...
Author(s) : S. Nestelberger, J. Cheng
The Point Load Test (PLT) [ 1, 2] was designed to simulate the SCG (slow crack growth) failure initiated by a rock pressing into the exterior wall of a polymer pipe. Today’s PE materials sustain long PLT testing times, due to its high SCG resistance design. Consequently, an accelerated “PLT+” with the support...
Author(s) : Amster Howard
Flowable fill is used for many applications, but mainly for pipe trench embedment and backfill. There are three ways that using flowable fill can be kind to the environment. Because flowable fill is self-leveling and has a strength greater than the native soil, the trench cross section can be minimized. This means...
Author(s) : Antonio Rodolfo Jr., Vanderley M. John
Unplasticised (U-PVC) and modified (M-PVC) pipes used in irrigation and infrastructure applications, outside diameter 326 mm, were evaluated according to various fracture mechanics methodologies, including fracture toughness (stress intensity factor KC and energy release rate GC, both at fracture), essential work of...
Author(s) : Gerald Pinter, Johannes Wiener, Florian Arbeiter, Abhishek Tiwari, Otmar Kolednik
For pipe applications, catastrophic failure due to crack growth has to be prevented by all means. Techniques to develop new and even tougher pipe materials are explored in this contribution. The aim is to create a multi-layer architecture, that exhibits high toughness as well as damage tolerance towards sharp notches....
Author(s) : Christian Schalich
Plastic pipes for infrastructure and building applications are precisely specified with regards to wall thickness and diameter. Pipe manufacturers use different measuring methods in order to ensure the required dimensional accuracy and maintain a constant high quality. This paper introduces a measuring system based on...
Author(s) : Suleyman Deveci, Nisha Preschilla, Sulistiyanto Nugroho, Birkan Eryigit
Carbon black (CB) has been used as a perfect and the cheapest solution to prevent photo degradation of polyethylene against UV light exposure. The effect of carbon black on the mechanical properties of polyethylene pipes was studied extensively, but only on well dispersed and distributed carbon black...
Author(s) : White G. Jee, Wes Long, Marcello Russo
In 2018, the North American HDPE pressure pipe market experienced unprecedented demand and growth especially in the region of the Permian basin in west Texas. 1 As aninnovative means of increasing HDPE pipe supply in this region, the first modular mobile extrusion plant was moved to Pecos, TX. Using custom designed...
Author(s) : Gisbert Rieß, Katrin Berger, Anna Kaltenegger-Uray, Florian Arbeiter
The effect of electron-beam and silane crosslink of polyethylene on the resulting permeation characteristics was investigated. Polyethylene sheets were processed and crosslinked by irradiation with high energy electrons and by grafting and subsequent hydrolysis of organosilanes during a reactive extrusion process. The...
Author(s) : Dustin Langston
The design and installation of polyethylene systems can be complex, specifically due to the many applications and environmental conditions that surround those systems. Online design tools have been developed to address this complexity and the various factors that must be considered. These online tools used widely in...
Author(s) : Yoshikatsu NISHIDA, Yukihisa YAMADA, Masaya IWASAKI, Masaru TOMOBE, Yuichi KOUGA
By using polyethylene as the main material for this fire extinguishing device pipe, a resin-made fire extinguishing device is developed that is maintenance-free for eight years and can cope with the abnormal heat generation of lithium ion batteries. In order to prevent the internal extinguishant from permeating and...