Plastic Pipes Conference Association # 2021 Amsterdam
Christian Schalich
Plastic pipes for infrastructure and building applications are precisely specified with regards to wall thickness and diameter. Pipe manufacturers use different measuring methods in order to ensure the required dimensional accuracy and maintain a constant high quality. This paper introduces a measuring system based on millimeter wave (radar) technology. It provides a non-contact, non- destructive, online measurement of wall thickness, inner and outer diameter, ovality, inner profile and sagging of plastic pipes during the extrusion process. One or more rotating transceivers continuously send and receive frequency modulated waves to ensure the monitoring of the wall thickness covering 360 degrees of the pipe circumference. The system is typically installed after the first vacuum tank in order to monitor the pre-cooled dimensions of a pipe. Its adaptivity to different materials allows for using this technology on all kinds of pipes made of polyolefines, flourpolymers and PVC in diameter ranges from 90 (optional 60) up to 3,200 mm with a min. wall thicknesses of 3.8 mm. For PVC this technology is able to measure even smaller pipes, starting from diameter 60 mm with a min. wall thickness of only 2.3 mm. The precooled 360° values of the wall thickness and diameter of the pipe are measured in order to evaluate the sagging effect of the material during the cooling process. These values help for a fast centering of the pipes and can automatically be controlled without delay to the minimum permitted nominal value. Due to a patented automatic determination ofthe material related refractive index, the operation of the system is intuitive and easy without any presetting of the material and its characteristics. The paper will outline this technology and the innovations that were developed in close cooperation with the demands of the market. The system as well as its functional principle will be introduced. By using this innovative technology, the start-up process is significantly facilitated and shortened. Thus, the production process is optimized, the highest quality of the pipe ensured and costs are saved. A Return on Investment (ROI) in less than 12 months is usually achieved.
Related papers
Author(s) : A. Marangoni
The quality of infrastructures is a key driver for maximizing the performance of the utilities networks and minimizing the environmental impacts associated with their operation. The water and sewer pipes are key network elements to guarantee a satisfactory service to the citizens. Their end-of-life management is an...
Author(s) : Li, Yanjun, Xiang, Aimin, Xu, HaiyunBeijing, Xie, Jianling, Ho, Kinman, Xu, HaiyunBeijing
It is necessary to evaluate the impact resistance of plastics pipes as they have the potential to be damaged by hitting or colliding during storage, transportation and installation. As a well-established test method, the Charpy impact strength of unnotched test pieces cut from thermoplastics pipes is determined...
Author(s) : A. Taraiya, P. Degenhart, M. Soliman, M. Boerakker, R. Handstanger, R. Kleppinger
Since the introduction of polyolefins for pressure pipes, continuous improvements have been made to meet ever-higher demands on their performance and to expand their application window beyond their original scope, mostly based on new resin formulations. Today, we also continue to push the limit to provide better...
Author(s) : Drew Mueller, Peter Dyke
HDPE Pipe holds a dominant position in several markets in North America: natural gas distribution, oil patch, mining, landfill and geothermal. So why are polyethylene’s municipal water and wastewater market shares so much lower than these other industries? How has the polyethylene industry been successful in growing...
Author(s) : Derek Muckle
A technical program has been undertaken to provide evidence on the suitability of polyethylene pipe and fitting systems for the distribution of hydrogen fuel gas. The underlying principle has been to evaluate material in the form of a pipe and to consider the performance of the pipe and of the welded jointing systems...
Author(s) : Lei Wang, Guozhi Xu, Qiaoping Qiu, Weihua Lu, Yanwang Han
PP-R (random copolymerized polypropylene) has been widely used in hot and cold water systems. However, the standard PP-R pipes have the disadvantages of a large high-temperature thermal expansion coefficient, an insufficient notched impact strength, and a low temperature and pressure resistance. In this paper, a new...
Author(s) : Ilija Radeljic, Ebbe Smith
HDPE pipe can be relatively easily scratched during the manipulation on the site, which is especially true for the marine pipelines. Installing the scratched marine pipe with the S bend method presents a risk and repair methods are usually performed. Currently, there is no standard defining the repair procedure, in...
Author(s) : Anders Andtbacka, Peter Sejersen
In the late nineties a study of the behavior of buried thermoplastics pipes was carried out. The project had input and participants from both the plastic pipe industry as well as from external organizations. Six external leading experts in the field of pipeline design, not necessarily plastics pipes design, have been...
Author(s) : Dominique GUEUGNAUT, Pascal AUSSANT, Romuald BOUAFFRE, Myriam BECHROURI
Concerns regarding the environment and sustainable development have revived interest in the reprocessing and re-use of polymer materials from manufactured objects that have reached the end of their operating life. Within this framework, formal professional agreements have been put in place at global level under the...
Author(s) : Paul J. Freudenthaler, Joerg Fischer, Mathias Eder, Reinhold W. Lang
For controlled water disinfection, typically chlorine is used and preliminary studies demonstrate its aging and crack growth acceleration effects on polyolefin pipe materials [1, 2]. Although the use of recycled plastics is not prohibited in some ISO standards for polyolefin piping systems [3–5], only small amounts...
Author(s) : Shuhei Nishida, Shintaro Iwasaki, Hidefumi Yamanaka, Takahiro Kasatani
Polyethylene pipelines have been used for natural gas service applications for over 40 years in Japan. It is thought that they will continue to be used widely for many years. Therefore, it is important to confirm the conditions of the existing pipelines being used for the long term. In this study, polyethylene pipes...
Author(s) : James F. Mason, Akshay Ponda, Hermann van Laak, Buc Slay
The effects of liquid hydrocarbons on long term strength of pipe grade thermoplastic resins is an important consideration when designing pressure pipe for use in the oil and gas industry. There is an extensive body of work going back several decades descri bing these effects for pipe grade polyethylenes, and all...
Author(s) : Sjoerd Jansma, René Hermkens
More than 20,000 km of rigid PVC (or PVC-U) pipes are currently in use for the distribution of natural gas in the Netherlands. In this decade, the majority of these pipes will reach their initially specified lifespan of 50 years. In the light of a possible replacement surge, it is increasingly important to...
Author(s) : Ernst van der Stok
For PE 100-RC, two tests are still under development for pipes: the point load test (PLT) and the accelerated notch pipe test (aNPT). The PLT was developed by a project group consisting of manufacturers and end users. The PLT determines the resistance to point loads as they can occur in practice. An earlier study...
Author(s) : S. Nestelberger, J. Cheng
The Point Load Test (PLT) [ 1, 2] was designed to simulate the SCG (slow crack growth) failure initiated by a rock pressing into the exterior wall of a polymer pipe. Today’s PE materials sustain long PLT testing times, due to its high SCG resistance design. Consequently, an accelerated “PLT+” with the support...
Author(s) : Dr. Holger Brüning, Serge Hascoët, Yann Delanne, Didier Nozahic, Jawdat Mansour, José Santana
RTE operates, maintains and develops the French electricity network, including the High and very High Voltage cable lines. Their network is the largest in Europe and includes over 6400 km of underground HV links operated in 2018. The company is modernizing and developing its network by investing 1.5 billion euros per...
Author(s) : Amster Howard
Flowable fill is used for many applications, but mainly for pipe trench embedment and backfill. There are three ways that using flowable fill can be kind to the environment. Because flowable fill is self-leveling and has a strength greater than the native soil, the trench cross section can be minimized. This means...
Author(s) : Gerald Pinter, Johannes Wiener, Florian Arbeiter, Abhishek Tiwari, Otmar Kolednik
For pipe applications, catastrophic failure due to crack growth has to be prevented by all means. Techniques to develop new and even tougher pipe materials are explored in this contribution. The aim is to create a multi-layer architecture, that exhibits high toughness as well as damage tolerance towards sharp notches....
Author(s) : Stephan Kneck, Henrik Iskov
It has become ever clearer that the resources of natural gas are an energy source, which will be less important in the future due to limitations in use of natural reserves. In order to prepare for the future the gas industry is looking at the alternative fuel gases, one such fuel gas is hydrogen. In order to prepare...
Author(s) : Mitsuaki Tokiyoshi, Yuichi Shibao, Yoshitaka Watanabe, Takeshi Yoshioka, Takashi Oka, Kohei Sasaki
It was common to use those pipelines for Steel in Japan. However Steel pipes have the long standing problems that it has been needed maintenance costs for rust prevention and antifouling property. Therefore it had been carried out the project that large diameter polyethylene pipeline applied for circulating water...