Papers
Plastic Pipes Conference Association # 2018 Las-Vegas
Ernest Lever
Six different polyethylene materials were tested using Cyclic Pressure Fatigue (CPF) as the accelerating process to correlate the results to conventional long-term hydrostatic test results that were previously developed as part of the material qualification process. The designation of the materials was unknown to the investigators. A good correlation was found and several positive and negative features of the proposed test method were identified.
The Plastic Pipe Institute (PPI) Hydrostatic Stress Board (HSB) commissioned the Gas Technology Institute (GTI) to perform Phase II of a research effort to develop a method to accelerate the validation of the Long Term Hydrostatic Strength (LTHS) performance of resins using CPF as the accelerating process. Phase I of this effort had shown a strong correlation between the Rate Process Method (RPM) and the CPF method and recommended a second follow on development effort.
The Phase II work has been completed and a final report was submitted to the HSB for review. The research results confirmed the strong correlation between the CPF and RPM methods, but highlighted difficulties in applying the method to Slow Crack Growth evaluation due to mixed mode failures. Detailed analysis of the test method and results supports the assertion that the maximum stress achieved in the stress cycle is the dominant factor accelerating the failure mechanism of the pipe, regardless of whether SCG or mixed-mode fractures are generated. The combination of peak cycle stress and notch-tip stress intensification will determine the exact mix of SCG or ductile tearing at the notch tip.
The CPF method can be used to effectively validate the ductile behavior of resins when used in conjunction with material specific bi-directional shift factors. Furthermore, the method is very useful in extending the cyclic fatigue resistance testing performed on polyethylene pipes over the past three decades. It was shown that the CPF results can extend the cyclic fatigue resistance evaluation of polyethylene materials to 100 million cycles to failure at 20°C. A method for ranking the relative cyclic fatigue performance of resins was suggested.
This paper will discuss the topics mentioned and provide suggestions for potential applications of the results and future work.
Related papers
Author(s) : A. Taraiya, P. Degenhart, M. Soliman, M. Boerakker, R. Handstanger, R. Kleppinger
Since the introduction of polyolefins for pressure pipes, continuous improvements have been made to meet ever-higher demands on their performance and to expand their application window beyond their original scope, mostly based on new resin formulations. Today, we also continue to push the limit to provide better...
Author(s) : Derek Muckle
A technical program has been undertaken to provide evidence on the suitability of polyethylene pipe and fitting systems for the distribution of hydrogen fuel gas. The underlying principle has been to evaluate material in the form of a pipe and to consider the performance of the pipe and of the welded jointing systems...
Author(s) : Peter Hubbard, Linqing Luo, Andrew Yeskoo, Kenichi Soga, Krista (Moita) Araica, Gus Cicala, Marshall McLeod
Seismically active faults pose a risk to buried water pipelines that can be complicated to quantify. Fault type, slip rate, pipeline geometry, and soil conditions all factor into a complex soil-pipeline interaction. For critical pipelines that cross faults, high-density polyethylene (HDPE) has become an attractive...
Author(s) : Dominique GUEUGNAUT, Pascal AUSSANT, Romuald BOUAFFRE, Myriam BECHROURI
Concerns regarding the environment and sustainable development have revived interest in the reprocessing and re-use of polymer materials from manufactured objects that have reached the end of their operating life. Within this framework, formal professional agreements have been put in place at global level under the...
Author(s) : Paul J. Freudenthaler, Joerg Fischer, Mathias Eder, Reinhold W. Lang
For controlled water disinfection, typically chlorine is used and preliminary studies demonstrate its aging and crack growth acceleration effects on polyolefin pipe materials [1, 2]. Although the use of recycled plastics is not prohibited in some ISO standards for polyolefin piping systems [3–5], only small amounts...
Author(s) : Mike Troughton, Amir Khamsehnezhad, Changyi Yu
When butt fusion welding polyethylene (PE) pipes in the field, it is often specified that the pipes must undergo fusibility testing in all combinations of suppliers, diameters and thicknesses before being fused in production. This is a very onerous and expensive task, but must be carried out to ensure that the PE...
Author(s) : Shuhei Nishida, Shintaro Iwasaki, Hidefumi Yamanaka, Takahiro Kasatani
Polyethylene pipelines have been used for natural gas service applications for over 40 years in Japan. It is thought that they will continue to be used widely for many years. Therefore, it is important to confirm the conditions of the existing pipelines being used for the long term. In this study, polyethylene pipes...
Author(s) : Ernst van der Stok
For PE 100-RC, two tests are still under development for pipes: the point load test (PLT) and the accelerated notch pipe test (aNPT). The PLT was developed by a project group consisting of manufacturers and end users. The PLT determines the resistance to point loads as they can occur in practice. An earlier study...
Author(s) : S. Nestelberger, J. Cheng
The Point Load Test (PLT) [ 1, 2] was designed to simulate the SCG (slow crack growth) failure initiated by a rock pressing into the exterior wall of a polymer pipe. Today’s PE materials sustain long PLT testing times, due to its high SCG resistance design. Consequently, an accelerated “PLT+” with the support...
Author(s) : Stephan Kneck, Henrik Iskov
It has become ever clearer that the resources of natural gas are an energy source, which will be less important in the future due to limitations in use of natural reserves. In order to prepare for the future the gas industry is looking at the alternative fuel gases, one such fuel gas is hydrogen. In order to prepare...
Author(s) : Mario Messiha, Britta Gerets, Jan Heimink, Andreas Frank, Florian Arbeiter, Gerald Pinter
A majority of field failure of viscoelastic plastic pipes can be attributed to slow crack growth (SCG) and has become crucial in terms of characterization of newly developed materials – particularly, if they are designed for pressurized pipe applications. In this study, investigations in terms of SCG resistances...
Author(s) : M. Eckes & Dr. B. Baudrit, Dr. M. Troughton & D. Wylie, H. van Laak & J. Fritz
Unplasticized polyamide 12 (PA-U12) is increasingly being used in pipe applications, especially in the gas sector. However, the material behavior in the usual quality tests for pipe welds has not yet been thoroughly investigated. For this reason, two research institutes, worked in cooperation with a manufacturer of...
Author(s) : Suleyman Deveci, Nisha Preschilla, Sulistiyanto Nugroho, Birkan Eryigit
Carbon black (CB) has been used as a perfect and the cheapest solution to prevent photo degradation of polyethylene against UV light exposure. The effect of carbon black on the mechanical properties of polyethylene pipes was studied extensively, but only on well dispersed and distributed carbon black...
Author(s) : Thomas R. Kratochvilla, Patrick Grünbeck, Christoph Bruckner, Raimund Eremiasch, Harald Wilhelm, Mario Vukelja
In the last decades pipe dimensions of extruded PE pipes have reached new orders of size. Today, PE pipes with outer diameters of up to DN/OD 3500 mm are produced and used for pressure pipe applications like seawater intake/discharge, outfall, sewage and industrial process piping systems. To test the long-term...
Author(s) : Gisbert Rieß, Katrin Berger, Anna Kaltenegger-Uray, Florian Arbeiter
The effect of electron-beam and silane crosslink of polyethylene on the resulting permeation characteristics was investigated. Polyethylene sheets were processed and crosslinked by irradiation with high energy electrons and by grafting and subsequent hydrolysis of organosilanes during a reactive extrusion process. The...
Author(s) : Alex Stolarz, Klaus Grønnegaard Lauridsen
Low temperature District Heating – COOL DH – addresses the challenges of the upcoming decades in the energy sector for new housing developments. Energy efficiency is an important aspect of modern building construction. Improved building insulation and other technologies result in lower heat demand and enable new...
Author(s) : Ulrich Schulte, Dr. -Ing. Joachim Hessel
In order to protect the Austrian lakes effectively against the discharge of effluent, a 13 km long pressure pipeline made of high density polyethylene was laid on the bottom of Lake Ossiach back in 1971. The DN355 to DN200 pipes were produced from a first generation HDPE-compound. The classification would have been...
Author(s) : Xinwen Yu, Aimin Xiang, Dongyu Fang, Peck Tze Kang, Jinghui Li
The Chinese PE water pipe market has developed significantly in recent years and particularly over the last 12 months. Against a background of water scarcity and growing urbanization, this evolving market has grown significantly in both size and quality awareness. On the back of past experiences, a fundamental...
Author(s) : Justin Brandt, Mike Griffin, Tony Cuvo
As plastic pipe gains share in new markets and applications, additional joining methods add further value, enabling continued growth for plastic pipes. To date, definitions of a “fit-for-purpose” mechanical joint for High Density Polyethylene (HDPE) pressure piping systems can vary significantly. As such, mechanical...
Author(s) : Mark Boerakker, Rudy Deblieck, a Harm Caelers, Arno Wilbers, Tine Boonen a DSM, Britta Gerets, Mirko Wenzel
Components made of plastic are facing ever-increasing demands with respect to their production, use and durability. This also holds for gas and drinking water pressure pipes made of high-density polyethylene (PE-HD), where service lifetimes of up to 50 years and in some cases even 100 years are required. One of the...