Papers
Plastic Pipes Conference Association # 2014 Chicago
Bill R. Vanhoose, Jarrett A. Nelson, Christa K. McNish, Richard W. Thomas
The Stepped Isothermal Method (SIM) is a form of Time-Temperature Superpositioning (TTS) that involves measuring the creep rate of a sample while it is subjected to a series of isothermal temperature steps. The accelerated temperature results can then be shifted back to room temperature to produce a master-curve. Performing multiple temperature steps on a single specimen reduces the noise associated with sample-tosample variability. This test has been used for over 15 years to characterize the creep behavior of a variety of products made with different polymers. The products include high-strength geotextiles, geogrids, mooring lines, underground storage tanks, and pipe. The polymers evaluated include polyester, polypropylene, polyamides, polyethylene naphthanate (PEN), and polyethylene. The purpose of this study was to validate results obtained by SIM on polypropylene by comparing the SIM results to conventional room temperature creep tests. The results demonstrate that the SIM results correlate well to conventional tests for up to 10,000 hours. Additionally, the SIM results can be considered superior to conventional tests because one can control variables much better over a 24 hour period than a 10,000 hour period.
Related papers
Author(s) : Dr. Henning Stieglitz
Urbanization and the increasing effects of climate change have meant the supply of fresh water and the disposal of wastewater, have become increasingly important in recent years. It is foreseeable that this demand will continue and intensify. In this context, plastic pipe plays a major role due to its unique...
Author(s) : Chris Ampfer, P.E., Harvey Svetlik, P.E.
The current polyethylene (PE) pipe bending limits (longitudinal and circumferential deflection) are based on a circumferential (tangential) strain tolerance limit of approximately 1%. Research in the late 1970’s using constant tensile strain focused on what strain can be imposed on HDPE by bending and not have it...
Author(s) : James F. Mason, Akshay Ponda, Hermann van Laak, Tobias Bauer
The long-term strength of unplasticized polyamide 12 (PA-U12) has been characterized using standard methods for plastic pressure pipe during the qualification process for use in buried piping systems for natural gas delivery operating at low ambient temperatures, usually less than 20 to 30°C at pressures...
Author(s) : Dr. Michael Pluimer, Sara Stone
The Notched Constant Ligament Stress test (NCLS test, ASTM F2136)[1] is a test method that measures the slow crack growth in High Density Polyethylene. The NCLS test requires a notch on all test specimens to act as a stress concentration at that point so crack propagation can be easily predicted and studied. In...
Author(s) : Michael Pluimer, Christian Herrild, Patrick Vibien
With enhanced interest in a circular economy and the potential use of recycled HDPE within HDPE conduit, a research project was undertaken to investigate the necessary technical requirements when using recycled HDPE. High Density Polyethylene (HDPE) conduit is a durable product designed to protect cables...
Author(s) : Carlos Domínguez, Predrag Micic, Rafael Juan, Nuria Robledo, Rafael A. García-Muñoz
Slow Crack Growth (SCG) resistance is the main property that must be controlled for assessing the long-term performance on polyethylene resins used for pipe application. The latest generation of bimodal and multimodal ethylene-α-olefin copolymers with exceptional balance of mechanical properties and processability...
Author(s) : J. Lahoz
An investigation project was launched in 2020 to clarify the relationships between the processing conditions and the design lifetime of PVC-U 250 pipes. Ca/Zn stabilized pressure pipes were extruded with different processing temperatures and characterized by their DSC B-onset temperature and degree of gelation. Their...
Author(s) : Suleyman Deveci, Aisha Khaleel, Birkan Eryigit
Short and long term hydrostatic pressure resistance of plastic pipes are measured according to ISO 1167, by applying an internal pressure that is calculated for the target hoop stress considering outer diameter and wall thickness of the pipe samples. Due to the nature of the extrusion process, wall thickness...
Author(s) : Jennifer Ravereau, Catherine GIORNI, Benjamin RABAUD, Frederic Mohier, Mehdi Ahmadi
Pipe installation and renewal are critical for network management and extension both in terms of cost and of logistics for installation. Plastic materials, as polyethylene, are constantly evolving to offer additional benefits (chemical resistance improvement, mechanical resistance, innovative functionalities)....
Author(s) : Chris Ampfer, Gene Palermo, Ernest & Oren Lever
This paper looks at the origin of the 10% allowable scratch depth rule for polyethylene (PE) pressure pipe developed in 1971 and research that has been performed over the years since its inception to determine the validity of this rule. The 10% rule has been used by natural gas pipeline operators since the 1970’s to...
Author(s) : Peter Hubbard, Linqing Luo, Andrew Yeskoo, Kenichi Soga, Krista (Moita) Araica, Gus Cicala, Marshall McLeod
Seismically active faults pose a risk to buried water pipelines that can be complicated to quantify. Fault type, slip rate, pipeline geometry, and soil conditions all factor into a complex soil-pipeline interaction. For critical pipelines that cross faults, high-density polyethylene (HDPE) has become an attractive...
Author(s) : Mario Messiha, Britta Gerets, Jan Heimink, Andreas Frank, Florian Arbeiter, Gerald Pinter
A majority of field failure of viscoelastic plastic pipes can be attributed to slow crack growth (SCG) and has become crucial in terms of characterization of newly developed materials – particularly, if they are designed for pressurized pipe applications. In this study, investigations in terms of SCG resistances...
Author(s) : Thomas R. Kratochvilla, Patrick Grünbeck, Christoph Bruckner, Raimund Eremiasch, Harald Wilhelm, Mario Vukelja
In the last decades pipe dimensions of extruded PE pipes have reached new orders of size. Today, PE pipes with outer diameters of up to DN/OD 3500 mm are produced and used for pressure pipe applications like seawater intake/discharge, outfall, sewage and industrial process piping systems. To test the long-term...
Author(s) : Lukas Travnicek, Pavel Hutar, Jan Poduska, Andreas Frank, Florian Arbeiter, Jaroslav Kucera, Jiri Sadilek, Gerald Pinter, Lubos Nahlik
The application of recycled material in pressure piping systems has been considered lately – it was suggested, that the recycled polyethylene could be used as a part of a multilayer pipe together with virgin material. This type of pressure pipes is not availableon the market yet, so their properties can be only...
Author(s) : Kensei INOUE, Mitsuaki TOKIYOSHI, Joji HINOBAYASHI, Takeshi KARINO, Toshinori KAWABATA, Takashi KURIYAMA
As the worldwide problems are over-population, unusual weather like as localized heavy rain and climate change. Against those problem, it has to need new projects to make a new agricultural field, drainage pipeline system and to spread the new underground irrigation system at peat land whereas spots of about 2 million...
Author(s) : Ulrich Schulte, Dr. -Ing. Joachim Hessel
In order to protect the Austrian lakes effectively against the discharge of effluent, a 13 km long pressure pipeline made of high density polyethylene was laid on the bottom of Lake Ossiach back in 1971. The DN355 to DN200 pipes were produced from a first generation HDPE-compound. The classification would have been...
Author(s) : Justin Brandt, Mike Griffin, Tony Cuvo
As plastic pipe gains share in new markets and applications, additional joining methods add further value, enabling continued growth for plastic pipes. To date, definitions of a “fit-for-purpose” mechanical joint for High Density Polyethylene (HDPE) pressure piping systems can vary significantly. As such, mechanical...
Author(s) : Mark Boerakker, Rudy Deblieck, a Harm Caelers, Arno Wilbers, Tine Boonen a DSM, Britta Gerets, Mirko Wenzel
Components made of plastic are facing ever-increasing demands with respect to their production, use and durability. This also holds for gas and drinking water pressure pipes made of high-density polyethylene (PE-HD), where service lifetimes of up to 50 years and in some cases even 100 years are required. One of the...
Author(s) : Britta Gerets, Mirko Wenzel, Kurt Engelsing
The strain hardening test (SHT, ISO 18488 [1]) becomes increasingly important for the characterization of high-density polyethylene (HDPE) grades and pipes made thereof. With regard to small pipe diameters, a smaller test specimen than the one defined in ISO 18488 has been developed. SHT results were demonstrated to...
Author(s) : Hermann van Laak, Jan Heimink, Mario Messiha, Andreas Frank, Christoph Bruckner, Thomas Kratochvilla
For high pressure pipes above maximum operation pressure of 10 bar, this paper emphasizes PA-U12 as the easy to install alternative to steel. It underlines the superb performance of PA-U12 pipes for alternative installation techniques without need for a separate mechanical protection. An unplasticized polyamide 12...